30 research outputs found

    Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function

    Full text link
    We present a both ultraviolet and infrared regularization independent analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta function to two loop order. We show explicitly that off-shell infrared divergences as well as the overall two loop ultraviolet divergence cancel out whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte

    Naturalness and theoretical constraints on the Higgs boson mass

    Full text link
    Arbitrary regularization dependent parameters in Quantum Field Theory are usually fixed on symmetry or phenomenology grounds. We verify that the quadratically divergent behavior responsible for the lack of naturalness in the Standard Model (SM) is intrinsically arbitrary and regularization dependent. While quadratic divergences are welcome for instance in effective models of low energy QCD, they pose a problem in the SM treated as an effective theory in the Higgs sector. Being the very existence of quadratic divergences a matter of debate, a plausible scenario is to search for a symmetry requirement that could fix the arbitrary coefficient of the leading quadratic behavior to the Higgs boson mass to zero. We show that this is possible employing consistency of scale symmetry breaking by quantum corrections. Besides eliminating a fine-tuning problem and restoring validity of perturbation theory, this requirement allows to construct bounds for the Higgs boson mass in terms of δm2/mH2\delta m^2/m^2_H (where mHm_H is the renormalized Higgs mass and δm2\delta m^2 is the 1-loop Higgs mass correction). Whereas δm2/mH2<1\delta m^2/m^2_H<1 (perturbative regime) in this scenario allows the Higgs boson mass around the current accepted value, the inclusion of the quadratic divergence demands δm2/mH2\delta m^2/m^2_H arbitrarily large to reach that experimental value.Comment: 6 pages, 4 figure

    Symmetry preserving regularization with a cutoff

    Get PDF
    A Lorentz and gauge symmetry preserving regularization method is proposed in 4 dimension based on momentum cutoff. We use the conditions of gauge invariance or freedom of shift of the loop-momentum to define the evaluation of the terms carrying Lorentz indices, e.g. proportional to k_{\mu}k_{\nu}. The remaining scalar integrals are calculated with a four dimensional momentum cutoff. The finite terms (independent of the cutoff) are unambiguous and agree with the result of dimensional regularization.Comment: 12 pages, 1 figure, v2 references adde

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore